您当前位置:主页 > 公司新闻 > 正文

别能力取决于频率跃迁谱线的宽度

点击数:   录入时间:2018-08-09 【打印此页】 【关闭
  原子钟是利用原子振荡频率来确定的时间标准。原子由原子核与外层电子组成,原子核带正电,带负电的电子绕着原子核运动。每个元素中的电子与原子核的距离不同,但只能处于一个特定的能级或“轨道”。当电子吸收能量时,它们会跃迁到更高的能量状态(将其看成是远离原子核);当电子释放能量时,它们会跃迁到较低能量状态(将其看成是接近原子核),损失的能量作为电磁辐射(微波、光波等)被释放出来。能量状态之间的这种跃迁就是原子钟要测量的“振荡”。
 
  原子对频率误差的鉴别能力取决于频率跃迁谱线的宽度,一般而言,谱线越窄,原子钟的精度越高。“但常温下的原子处于剧烈运动中,提取和观察会受原子热运动的影响,产生局限。”中国科学院上海光学精密机械研究所(以下简称上海光机所)屈求智副研究员解释道。“冷原子技术则是用激光的方法将原子温度从室温降低到接近绝对零度。对这些几乎不动的原子进行测量,结果会更加准确。”
 
  事实证明,相比于之前太空运行的最高精度300万年误差1秒的热原子钟,空间冷原子钟将时间测量精度提升了10倍。
 
  有了它可开展更多太空实验
 
  地球环境下,物质运动必然受限于重力加速度,因而很难获得更窄的谱线。那么,何不将场景置换到太空?
 
  “在微重力环境下,原子团可以做超慢速匀速直线运动,基于对这种运动的精细测量,科学家们可以获得较地面上更加精密的原子谱线信息,从而可获得更高精度的原子钟信号,实现在地面上无法实现的性能。”屈求智副研究员精准总结了其中的技术支撑。这是原子钟和时间基准发展历史上的重要突破。
 
  空间冷原子钟便是将激光冷却原子技术与空间微重力环境相结合,让原子钟向更高精度进发。